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We consider the solution in the time domain of water-wave scattering by arrays of
bottom-mounted cylinders. It has already been shown that near trapping occurs for
certain arrangements of cylinders and we are especially focused on this phenomenon.
We begin with the well-known single-frequency solution to the problem of a group
of cylinders, and the extension of this solution to complex frequencies. It has been
shown that singularities (scattering frequencies or resonances) occur for certain values
of the complex frequency and these singularities are associated with the near-trapped
mode. We show that it is possible to approximate the solution near these singularities,
and produce a modal shape which is associated with the near-trapped mode. We
then consider the time-dependent problem, beginning with the well-known incident
plane wave packet solution. We also show how the problem of an arbitrary initial
displacement can be found using the single-frequency solutions. This latter result relies
on a special inner product which gives a generalized eigenfunction expansion (because
the operator has a continuous spectrum). We then consider the approximation of the
time-dependent motion using special mode shapes associated with the scattering
frequencies. This approximation relies on the scattering frequencies lying close to the
real axis. We present numerical results which show that this approximation is accurate
for sufficiently large time.

1. Introduction
This paper is concerned with the phenomenon of near-trapping of waves, in

particular, the near-trapping phenomena which was discovered by Evans & Porter
(1997) for the case of bottom-mounted cylinders. Near-trapped modes appear in the
frequency domain solution as large spikes in the response, and it is in this context
that they were considered by Evans & Porter. In the time domain the near-trapped
mode appears as a slowly decaying mode which has a characteristic oscillation and
fall time, and this was investigated by Eatock Taylor et al. (2006). The phenomenon
of near trapping is associated with the phenomenon of trapped modes, although near
trapping is not associated with any non-uniqueness in the frequency domain solution
for real frequencies. Trapped modes in the context of an unbounded domain for water
waves have received considerable attention since their discovery by McIver (1996),
and they have been found for many situations (McIver & McIver 1997; McIver 2000;
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McIver & McIver 2006). A trapped mode is associated with the existence of a real
eigenvalue of the governing operator, whereas the near-trapped mode is associated
with a singularity of the analytic extension of the governing operator close to the
real axis. Unlike a trapped mode, a near-trapped mode can be excited by an incident
wave.

A near-trapped mode is associated with a scattering frequency (also called a
resonance) close to the real axis. A scattering frequency is a pole of the analytic
continuation of the scattering operator (or the resolvent). This means that the pole
occurs for non-physical frequencies for which the scattered solution grows towards
infinity (away from the scattering body). In practice, the scattering frequencies can
usually be calculated by considering the formula for real values of frequencies, but
allowing the frequency to be complex and finding values for which the operator is
not invertible. For the case of bottom-mounted cylinders that is exactly what was
done by Evans & Porter (1997). Finding the scattering frequencies can be numerically
challenging, and various methods to find them have been proposed (Meylan &
Gross 2003). Scattering frequencies occur in many linear scattering processes, not
just linear water waves. In the context of water waves, they have been investigated
by Hazard & Lenoir (1993) and Hazard & Lenoir (2002) for the case of arbitrary
two-dimensional bodies (although calculations were presented only for special cases),
and by Meylan (2002) where the theory was connected with Lax–Phillips scattering
and it was shown that the time-domain solution could be represented exactly as a
sum over the scattering frequencies. This is only possible because for the problem
considered, a floating elastic plate, the water depth was assumed shallow. Associated
with the scattering frequencies is a mode shape, similar to an eigenfunction. The
simple problem considered here, scattering by bottom-mounted cylinders, reduces
to scattering by disks with Neumann boundary conditions for the two-dimensional
Helmholtz equation. This avoids many of the difficulties associated with the analytic
continuation, because there is only a single parameter, the wavenumber, which needs
to be extended to complex values and the analytic continuation is therefore relatively
simple.

The solution method in the time domain for arbitrary initial displacements (as
opposed to a long-crested incident wave group) can be expanded in the frequency
domain solutions using the generalized eigenfunction method. This method goes
back to the work of Povzner (1953); Ikebe (1960); Wilcox (1975), and it has
been used recently by Hazard & Lenoir (2002); Meylan (2002); Hazard & Loret
(2007a); Hazard & Meylan (2007) for various water-wave problems. The generalized
eigenfunction method works for certain types of operators which are self-adjoint, but
which have a continuous spectrum. We therefore require a generalization of our notion
of eigenfunction to functions which have infinite energy. The generalized eigenfunction
expansion method is not an approximation and it provides an alternative to other
time-domain methods, such as the memory-effect method and the time-dependent
Green function method. The usual method to connect the scattering frequencies with
the long-time behaviour is through the singularity expansion method (SEM), which is
the method used by Hazard & Loret (2007b). In the SEM the solution is found using
the Laplace transform, and the Bromwich contour integral is deformed (using the same
analytic extension of the resolvent) to pass around the contribution from the scattering
frequencies. We present here a new method in which the generalized eigenfunction
expansion is connected to the expansion over the scattering frequencies. The time-
domain solution using the scattering frequencies is an approximation which has a
range of validity. For short times it is invalid because the solution is dominated by
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short-lived effects. For medium times (computable times), if the scattering frequencies
lie close to the real axis, the approximate solution will give good agreement with
the full solution. In the long time, the response will be dominated by the very
slowest decaying terms, which are described for a bobbing cylinder in Ursell (1964);
Maskell & Ursell (1970). The importance of these very long-time terms remains an
open question, and it is not considered in the present work.

The outline of the paper is as follows. In § 2 we introduce the governing
equations for the array. In § 3 we discuss the eigenanalysis and give an approximate
formula to predict the response shape at the near-trapped mode. Application of
the approximation to the time-domain analysis of wave scattering by the array is
discussed in § 4. This section contains a number of results which extend and explain
what was found in Evans & Porter (1997). We give the well-known formulas for
the case of an incident long-crested plane wave group, and we develop the formula
for the case of an arbitrary forcing. The formula for the arbitrary case is derived
using a generalized eigenfunction expansion. We then show that we can approximate
the solution in the time domain by using the response shape (and complex response
frequency) for large time. This gives a powerful predictive tool, as well as a clear
explanation for the exponential rise and fall time which has been observed for these
near-trapped modes. Section 5 is a brief summary of the paper.

2. Equations for Nc bottom-mounted cylinders
We consider the case of Nc bottom-mounted cylinders, of radius al , centred at

(xl, yl) in water of constant finite depth H . The Cartesian coordinate system (x, y, z)
has its origin on the mean free surface, with z pointing upwards. We define x = (x, y).
The problem is linearized and the time-dependent equations are given by

�Ψ (x,z, t) = 0, x ∈ Ω, (2.1)

∂nΨ = 0, x ∈ ∂Ω, (2.2)

∂nΨ = 0, z = −H, (2.3)

where Ψ is the velocity potential, ∂n is the normal derivative, Ω is the fluid domain
and ∂Ω is the boundary of the fluid domain and the wetted cylinder walls. At the
free surface z = 0 we have the kinematic condition

∂tζ = ∂nΨ, z = 0, (2.4)

where ζ is the surface displacement and t is time. The dynamic condition (the
linearized Bernoulli equation) is

∂tΨ = −ζ, z = 0. (2.5)

Note that we have non-dimensionalized these equations with respect to a length scale
L (which is arbitrary) and a time scale

√
L/g so that gravity is unity.

2.1. Frequency domain

We can transform the equations in the time domain to the equations in the frequency
domain by setting all time dependence to be e−iωt so that we can write

Ψ (x,z, t) = Ψ̂ (x,z, ω) e−iωt and ζ (x, t) = ζ̂ (x,ω) e−iωt . (2.6)

This is equivalent to a Fourier transform in time of the equations.
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Equations (2.1)–(2.5) become

�Ψ̂ (x,z, ω) = 0, x ∈ Ω, (2.7)

∂nΨ̂ = 0, x ∈ ∂Ω, (2.8)

∂nΨ̂ = 0, z = −H, (2.9)

−iωζ̂ = ∂nΨ̂ , z = 0, (2.10)

and

iωΨ̂ = ζ̂ , z = 0. (2.11)

Furthermore, because the cylinders extend to the seabed, the depth dependence can
be removed by separation of variables and we can write the velocity potential as

Ψ̂ (x,z, ω) = φ (x,k) ψ (z) , (2.12)

where

ψ (z) =
cosh (k (z + H ))

cosh kH
, (2.13)

and k is the positive real solution of the dispersion equation

ω2 = k tanh kH. (2.14)

We also note that there are only propagating modes in this problem and the evanescent
modes are zero. In what follows, both the variables k and ω will play an important
role and we will need to use both. We assume that k � 0 and that k(ω) = k(−ω). We
also take ω(k) as the positive solution of (2.14).

We now consider the case when the system is excited by an incident wave. Usually,
the incident wave is assumed to be a plane wave, but in what follows we will need to
consider more general incident waves of the form Jn (kr) eiνθ . The equation for φ (x)
is

�φ + k2φ = 0, x ∈ Ω̄, (2.15)

∂nφ = 0, x ∈ ∂Ω̄, (2.16)

where Ω̄ is the free surface of the fluid domain and ∂Ω̄ is the boundary of the free
surface and cylinders. We also require the Sommerfeld radiation boundary condition,
which will be applied when we write down the expansion for the velocity potential.

The problem of calculating the wave diffraction by bottom-mounted cylinders
permits a very efficient solution based on the Kagemoto & Yue (1986) interaction
analysis. This theory is for arbitrary bodies, and the simplified equations for bottom
mounted cylinders were given in Linton & Evans (1990). The theory is based
on representing the incident and scattered wave around each body in the local
eigenfunction expansion (in cylindrical coordinates), and mapping these from one
body to another using Graf’s addition theorem for Bessel functions (Abramowitz &
Stegun 1970). As this theory is well-known, and has been used extensively, we will
only summarize the equations.

We write the total potential as the sum of the incident potential and a scattered
potential as

φ (x, k) = φIn (x, k) + φs (x, k) . (2.17)
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The scattered potential φs (x, k) we write as the sum of scattered waves centred at
each of the Nc cylinders in the local coordinate system of each cylinder,

φs (x, k) =

Nc∑
j=1,

∞∑
m=−∞

Aj
mH (1)

m (krj )e
imθj , (2.18)

where rj and θj are the cylindrical coordinates of point x in the local coordinates of
cylinder j , and H (1)

m (krj ) is a Hankel function of the first kind (Abramowitz & Stegun
1970). We write the incident wave in the local coordinate system of cylinder l as

φIn (x, k) =

∞∑
m=−∞

Dl
mJm(krl)e

imθl , (2.19)

and we will show how to determine Dl
m shortly. We now consider the lth cylinder and

map all the scattered waves from the other cylinders using Graf’s addition theorem
to incident waves in the local coordinate system of cylinder l. This gives us

φ (x, k) =

∞∑
m=−∞

Dl
mJm(krl)e

imθl +

∞∑
m=−∞

Al
mH (1)

m (krl)e
imθl (2.20)

+

∞∑
m=−∞

(
Nc∑

j=1,j �=l

∞∑
ν=−∞

Aj
mH (1)

ν−m(kRjl)e
i(ν−m)ϕjl

)
Jm (krl) eimθl , (2.21)

where (Rjl, ϕjl) are the polar coordinates of the mean centre position of cylinder l in
the local coordinates of cylinder j . The boundary condition ∂nφ = 0 at the boundary
of cylinder l (where rl = al) gives us

∞∑
m=−∞

Dl
mJ ′

m(kal)e
imθl +

∞∑
m=−∞

Al
mH (1)

m

′
(kal)e

imθl (2.22)

+

∞∑
m=−∞

(
Nc∑

j=1,j �=l

∞∑
ν=−∞

Aj
mH (1)

ν−m(kRjl)e
i(ν−m)ϕjl

)
J ′

m (kal) eimθl = 0. (2.23)

Since this holds for each angle we obtain

Dl
mJ

′

m(kal) + Al
mH (1)′

m (kal) +

(
Nc∑

j=1,j �=l

∞∑
ν=−∞

Aj
mH (1)

ν−m(kRjl)e
i(ν−m)ϕjl

)
J ′

m (kal) = 0, (2.24)

which simplifies to

J ′
m(kal)

H
(1)′
m (kal)

[
Nc∑

j=1,j �=l

∞∑
τ=−∞

Aj
τH

(1)
τ−ν(kRjl)e

i(τ−m)ϕjl

]
+ Al

m = − J ′
m(kal)

H
(1)
m

′
(kal)

Dl
m. (2.25)

For the case of a plane incident wave

φIn = eik(x cos χ+y sin χ), (2.26)

where χ is the incident wave angle,

Dl
ν = eik(xl cos χ+yl sinχ)eiν(π/2−χ). (2.27)

For the case of a cylindrical incident wave

φIn = Jn (kr) einθ , (2.28)
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we calculate Dl
m from Graf’s addition theorem (Yilmaz & Incecik 1998)

Jn(kr)einθ =

∞∑
ν=−∞

Jν(krl)Jν−n(kRl)e
i(ν−n)(π−ϑl )eiνθl , (2.29)

where (Rl, ϑl) is the coordinates of the centre of lth cylinder in radial coordinates
centred at the origin. Therefore,

Dl
ν =

∞∑
ν=−∞

Jν−n(kRl)e
i(ν−n)(π−ϑl ). (2.30)

3. Scattering frequencies
We begin with the truncated version of (2.25), and develop our theory from this

approximation. An equivalent theory could be developed using the full equations
and the truncation could be introduced later when a numerical approximation was
required. The truncated version of (2.25), approximated by a finite number of modes,
is

J ′
m(kal)

H
(1)′
m (kal)

[
Nc∑

j=1,j �=l

M∑
τ=−M

Aj
τH

(1)
τ−ν(kRjl)e

i(τ−m)ϕjl

]
+ Al

m = − J ′
m(kal)

H
(1)
m

′(kal)
Dl

m, 1 � l � Nc.

(3.1)

This can be written as a matrix equation for the unknown vector a of coefficients Al
ν

as

M(k)a + a = f (k), (3.2)

where M is the matrix which follows from the left-hand side of (2.25) and f is
the vector which follows from the right-hand side. Equation (3.2) is the equation to
calculate the scattering numerically for real frequencies. The solution to the truncated
scattering problem is given by

a = (I + M(k))−1 f (k), (3.3)

where I is the identity matrix.
We now consider (2.25) for complex k. We find that the matrix I + M(k) has a zero

eigenvalue for a set of discrete points k = kp in the lower half of the complex plane
(which is equivalent to the matrix M(kp) having an eigenvalue of −1). From equation
(3.3) for k = kp , a will be singular, i.e. the system will have infinite response. The values
kp are called scattering frequencies. (I + M(k))−1 is the resolvent and the scattering
frequencies are the singularities of the analytic continuation of the resolvent. There is
no requirement for the analytic continuation of the matrix M(k) to be meromorphic,
i.e. we may have arbitrary branch cuts, accumulation points of zeros, etc. Even in very
well-behaved situations (such as Meylan 2002) there was an infinite number of zeros.
Determining the properties of the analytic continuation in the general case remains
challenging. It is possible to represent the solution in the time domain as a sum over
the scattering frequencies plus other contributions, and this method is known as the
SEM. We also note that, due to causality, the scattering frequencies only occur in the
lower half-plane. This is because we have used e−iωt time dependence (with positive
ω). For certain very special situations in the general wave scattering problem, a real
value of the scattering frequency kp can occur which corresponds to a trapped mode.
For the case of scattering by a finite array of cylinders in an unbounded domain
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Figure 1. The two arrangements of cylinders and the points at which we will calculate the
displacement.
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Figure 2. The location of the scattering frequencies in the region of the complex plane given
by {z ∈ �, −0.2 < Im(z) < 0, 0 < Re(z) < 5} : (a) is for four and (b) is for nine cylinders. The
single roots are marked with a × and the double roots with an �.

trapped modes have never been found. However, there are situations of near trapping
where a scattering frequency occurs close to the real axis, as was shown by Evans &
Porter (1997). In that work, the near trapping occurred especially for symmetric
arrangements of identical cylinders.

3.1. Results for the scattering frequencies

For our numerical calculations we consider two arrangements of cylinders, a grid of
four cylinders and a grid of nine cylinders. The cylinders have radius 1 and the centres
of the cylinders are spaced 3 apart. These are shown in figure 1. Figure 2 shows the
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location of the scattering frequencies in the subset of the complex plane given by
{z ∈ �, −0.2 < Im (z) < 0, 0 < Re (z) < 5} for the two arrangements. There is one
scattering frequency close to the real axis for the four cylinders at 2.7641–0.0122i

and there are three scattering frequencies close to the real axis for nine cylinders at
2.7114–0.0041i (single root), 2.8284–0.0102i (single root) and 2.7635–0.0086i (double
root). Note that the real parts of these values are all very similar.

3.2. Calculation of the residues

Suppose we have a scattering frequency at a complex wavenumber kp . The scattering
frequency kp is associated with an eigenvector ukp

with the property that

(I + M(kp))ukp
= 0. (3.4)

Near a simple pole we can write the inverse of I + M(k) as

(I + M(k))−1 ≈ A(kp)

k − kp

, (3.5)

where A(kp) is the residue which is connected with a projection onto the eigenspace
associated with ukp

. The expression for A(k) follows from Hazard & Loret (2007b,
Theorem 3.5, p. 934) using a result due to Steinberg (1968), when the eigenspace has
dimension one. The case of a double root will be presented separately for reasons of
clarity. In practice, the double roots situation is important because in problems with
symmetry (which we consider here) double roots do occur. Near the simple root kp it
can be shown that

(I + M(k))−1 ≈
ukp

u∗
k∗
p

u∗
k∗
p
M(1)ukp

(k − kp)
, (3.6)

where u∗
k∗
p
, written as a row vector, is the eigenvector of the adjoint of M with

eigenvalue −1 (which occurs at k∗
p). The action of the right-hand side is to multiple a

column vector by the row vector u∗
k∗
p

to produce a scaler and then to multiple this by

the column vector ukp
normalized by the denominator (which is also a scalar). M(1) is

the derivative of M at kp given by

M(1) =
d

dk
M(k)|k=kp

. (3.7)

Therefore,

A(kp) =
ukp

u∗
k∗
p

u∗
k∗
p
M(1)ukp

. (3.8)

3.2.1. Double root formula

In the case of double roots we assume that there are two linearly independent
eigenvectors associated with kp . The case where there is only a single eigenvector
would definitely be exceptional, and we have not encountered this situation in any
numerical results. Such a situation would also imply more complicated time-dependent
behaviour, which may make the case physically impossible.

We let ukp
and vkp

be two linearly independent eigenvectors and we choose the two
eigenfunctions of the adjoint u∗

k∗
p

and v∗
k∗
p

with the properties that ukp
v∗

k∗
p
= vkp

u∗
k∗
p
= 0.

In general, we have to be careful about choosing ukp
and vkp

, but in the examples
considered here where the double root arises from the body symmetry, any linear



Water-wave scattering by cylinders 111

0

2

4

0

–1

–2

–3

–4 –4

–2

1

2

3

4

0ξ

–0.5

–1.0

0.5

1.0

x

y

Figure 3. The near-trapped mode for four cylinders associated with the scattering frequency
at 2.7641–0.0122i.

independent vectors are fine. Then

A(kp) =
ukp

u∗
k∗
p

u∗
k∗
p
M(1)ukp

+
vkp

v∗
k∗
p

v∗
k∗
p
M(1)vkp

. (3.9)

Triple or higher roots can obviously be treated in a similar fashion.

3.3. Approximation of the frequency-domain solution.

Near the scattering frequency we can approximate the scattered wave φs given by
(3.3), using the approximation derived in (3.8) or (3.9) (although we will not consider
this latter case explicitly). Thus near the point kp the approximation is

a (k) ≈
u∗

k∗
p

f
(
kp

)
u∗

k∗
p
M(1)ukp

(
k − kp

)ukp
. (3.10)

We observe that we can extend f to complex values from the definition given in the
right-hand side of (3.1).

3.4. Results for the approximation in the frequency domain

We can find the mode shape associated with each of the scattering frequencies from

Ukp
(x) =

Nc∑
j=1,

N∑
m=−N

uj
mH (1)

m (kprj )e
imθj , (3.11)

where kp is the scattering frequency and uj
m are the values corresponding to the

eigenvector ukp
. Note that we are using the notation u for the vector of coefficients

and U for the corresponding function. The mode shapes are not the eigenfunctions of
any operator, and they grow as r tends to infinity (because kp is in the lower complex
half-plane).

Figures 3 and 4 show the surface displacement associated with the eigenvector
ukp

. We plot Re{Ukp
} and in movies 1–5 we show the surface displacement for a
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Figure 4. The near-trapped mode for nine cylinders associated with the scattering frequency
at 2.7114–0.0041i (a), 2.7635–0.0086i (b) and (c), and 2.8284–0.0102i (d ).

complete period, Re{Ukp
e−iωpt}. These are the near-trapped modes. Their growth

towards infinity is quite slow for scattering frequencies close to the real axis, which
is why the growth is not apparent in the figures. We can see that the modal shape
for nine cylinders is approximately composed of various combinations of the modal
shapes for four cylinders, either in phase or out of phase with each other.

4. Time-domain calculations
The solution in the frequency domain can be used to construct the solution in the

time domain. This was shown by Eatock Taylor et al. (2006) and discussed further
by Eatock Taylor & Meylan (2007) for the case of a plane incident wave which
is initially far from the body. However, when we consider an initial displacement
which is non-zero around the cylinders, the problem is of much greater complexity.
The solution then requires a generalized eigenfunction expansion and a special inner
product.

4.1. Calculation in the time domain for a plane incident wave

Consider the case when the cylinders are excited by a long-crested incident wave
travelling in the χ direction with arbitrary initial profile f (x cosχ + y sinχ) when
the wave is far from the body for large negative time. If we denote

f̂ (k) =

∫ ∞

−∞
f (s) eiksds, (4.1)
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then we can express the time-dependent motion by

Φ (x, t) =
1

2π

∫ ∞

0

f̂ (k)
(
eik(x cos χ+y sin χ) + φs (x, k)

)
e−iωtdk

+
1

2π

∫ ∞

0

f̂ (−k)
(
e−ik(x cos χ+y sin χ) + (φs (x, k))∗) eiωtdk, (4.2)

where Φ (x, t) is the surface potential (we could find the full potential Ψ by including
the ψ term in the integral) and ω is related to k through the dispersion equation (2.14).
This formula is derived from the principle of superposition of the solutions for
each frequency. We find φs (x, k), by solving (2.25) for the incident potential given
by eik(x cos χ+y sin χ ) (i.e. using (2.27)). Provided that f (t) is real (so that f̂ (−k) = f̂ (k)∗),we
can write

Φ (x, t) = Re

[
1

π

∫ ∞

0

f̂ (k)
(
eik(x cos χ+y sinχ) + φs (x, k)

)
e−iωtdk

]
. (4.3)

4.2. Calculation in the time domain for arbitrary initial conditions

Calculation of the displacement for arbitrary initial conditions is a more challenging
problem, and seems not to have been undertaken hitherto. Unlike the case of a plane
incident wave we need to begin with the equations in the time domain (2.4)–(2.5). We
introduce the operator G which maps the free surface potential Φ to the potential Ξ

throughout the fluid domain. We define GΦ =Ξ , and obtain Ξ by solving

�Ξ (x,z) = 0 x ∈ Ω, (4.4)

∂nΞ = 0, x ∈ ∂Ω, (4.5)

∂nΞ = 0, z = −H, (4.6)

Ξ = Φ, z = 0. (4.7)

We introduce the operator ∂nG which maps the free surface potential to the normal
derivative of potential at the surface (the Dirichlet-to-Neumann map) which is given
by

∂nGΦ = ∂nΞ |z=0 . (4.8)

We can therefore write (2.1)–(2.5) as the following:

i∂t

(
Φ

−iζ

)
=

(
0 1

∂nG 0

)(
Φ

−iζ

)
. (4.9)

The evolution operator

A =

(
0 1

∂nG 0

)
(4.10)

is symmetric in an inner product space equipped with the following inner product〈(
Φ

−iζ

)
,

(
Υ

−iη

)〉
H

=

∫
Ω

(∇GΦ) (∇GΥ )∗ dΩ +

∫
Ω̄

(−iζ ) (−iη)∗ dΩ̄. (4.11)

Note that this inner product is an expression for the energy and it follows that, since
the equations of motion preserve energy, our operator A which gives the evolution
of energy must be symmetric. We can prove this mathematically by using Green’s
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second identity:∫
Ω

(∇GΦ) (∇GΥ ) dΩ =

∫
Ω̄

(∂nGΦ) Υ dΩ̄ −
∫

Ω

(�GΦ) (GΥ ) dΩ

=

∫
Ω̄

(∂nGΦ) Υ dΩ̄, (4.12)

(the last line following since �GΦ = 0). Therefore,〈
A

(
Φ

−iζ

)
,

(
Υ

−iη

)〉
H

=

∫
Ω

(−i∇Gζ ) (∇GΥ )∗ dΩ +

∫
Ω̄

(∂nGΦ) (−iη)∗ dΩ̄

=

∫
Ω̄

(−iζ ) (∂nGΥ )∗ dΩ̄ +

∫
Ω

(∇GΦ) (−i∇Gη)∗ dΩ

=

〈(
Φ

−iζ

)
, A

(
Υ

−iη

)〉
H

. (4.13)

We now make the non-trivial assumption that the inner product space is a Hilbert
space and the operator is self-adjoint. The proof of this is technical, and requires very
precise definitions of which functions are in the Hilbert space. It is the property of
self-adjointness which we need for our generalized eigenfunction expansion.

4.2.1. Generalized eigenfunctions of A
The generalized eigenfunctions of A satisfy

A
(

Φ

−iζ

)
= ω

(
Φ

−iζ

)
. (4.14)

Equation (4.14) is nothing more than (2.7)–(2.11). This means that to solve for the
generalized eigenfunctions of A we need to solve the frequency domain equations,
and the frequency ω is exactly the eigenvalue.

We write the eigenfunctions of A (with eigenvalue ω) in the vector form

�φn(x, ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
φn(x, k (ω))

ωφn(x, k (ω))

)
, ω > 0,

(
(φn(x, k (ω)))∗

ω (φn(x, k (ω)))∗

)
, ω < 0,

(4.15)

where the subscript n represents counting over an index (and not the normal
derivative). φn(x, k) is the solution for an incident wave of the form Jn (kr) einθ .
That is

φn(x, k) = Jn (kr) einθ +

Nc∑
j=1

∞∑
m=−∞

Aj
mH (1)

m (krj )e
imθj , (4.16)

where Aj
m are found by solving (2.25) with Dl

m given by (2.30). We know that the
generalized eigenfunctions are orthogonal so that

〈�φ+
n (x, ω1),�φ

+
m(x, ω2)〉H = Λn (ω1) δ (ω1 − ω2) δmn, (4.17)

but we need to determine the normalizing function Λn (ω1) . This is achieved by using
the result that the generalized eigenfunctions satisfy the same normalizing condition
with and without the scattering terms. This result, the proof of which is quite technical,
is well known and has been shown for many different situations. The original proof
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was for Schrödinger’s equation and was due to Povzner (1953); Ikebe (1960). A proof
for the case of Helmholtz equation (our problem if the depth is shallow) was given
by Wilcox (1975). Recently, the proof was given for water waves by Hazard & Lenoir
(2002); Hazard & Loret (2007a). In none of these papers were any calculations made.
Furthermore, they avoided using delta functions so that no expression equivalent to
(4.17) appears.

We now assume that the generalized eigenfunctions satisfy the same normalizing
condition with and without the scattering terms and also that we can remove the
scattering cylinders when calculating the normalizing condition. This gives us the
following (assuming that ω1 � 0 and ω2 � 0)

〈�φ+
n (x, k(ω1)), �φ

+
m(x, k(ω2))〉H =

〈(
Jn (k1r) einθ

ω1Jn(k1r)e
inθ

)
,

(
Jm(k2r)e

imθ

ω2Jm(k2r)e
imθ

)〉
H

=

∫
Ω ′

(∇GJn(k1r)e
inθ )(∇GJm(k2r)e

imθ )∗dΩ ′

+

∫
Ω̄ ′

(ω1Jn(k1r)e
imθ )(ω2Jm(k2r)e

imθ )∗dΩ̄ ′

=

∫
Ω̄ ′

(Jn(k1r)e
inθ )(∂nGJm(k2r)e

imθ )∗dΩ̄ ′

+ ω1ω2

∫
Ω̄ ′

(Jn(k1r)e
inθ )(Jn(k2r)e

imθ )∗dΩ̄ ′

=

∫
Ω̄ ′

(Jn(k1r)e
inθ )(ω2

mJm(k2r)e
imθ )∗dΩ̄ ′

+ ω1ω2

∫
Ω̄ ′

(Jn(k1r)e
inθ )(Jn(k2r)e

imθ )∗dΩ̄ ′

= 4π
ω2

2

k1

δnmδ(k1 − k2)

= 4π
ω2

2

k1

δnmδ(ω1 − ω2)
dω

dk

∣∣∣∣
ω=ω1

, (4.18)

where Ω ′ is the entire domain with the cylinders removed and Ω̄ ′ is the free surface
of this domain. The last steps follow from the Bessel transform and from the change
of coordinates expression for delta functions. This result allows us to calculate the
expansion of the potential in generalized eigenfunctions. The negative ω case is almost
identical, except we need to evaluate the derivative at ω = − ω1 since we have defined
k to be positive.

4.2.2. Expansion in generalized eigenfunctions

The solution on the free surface can be expanded as(
Φ (x, t)

−iζ (x, t)

)
=

∫ ∞

−∞
k

{ ∞∑
n=−∞

fn (ω)�φn(x, ω)

}
e−iωtdω. (4.19)

We include the weighting term k (which is always positive) because it is required for
the orthogonality relation for Bessel functions, and including it here makes subsequent
formulas simpler. The time-domain solution throughout the fluid can be calculated
in a straightforward way, by including the depth-dependence term ψ .
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If we take the inner product (assuming ω � 0) we obtain〈(
Φ (x, 0)

−iζ (x, 0)

)
,�φn(x, k)

〉
H

= 4πfn (ω) ω2 dω

dk
. (4.20)

This gives the following expression for fn (ω) for ω � 0,

fn(ω) =
1

4πω2

dk

dω

∫
Ω

∇GΦ(x, 0) (∇Gφn(x, k))∗dΩ+
1

4πω2

dk

dω

∫
Ω̄

−iζ (x, 0)(ωφn(x, k))∗dΩ̄

=
1

4πω2

dk

dω

∫
Ω̄

Φ (x, 0) (∂nGφn(x, k))∗ dΩ̄ − i

4πω2

dk

dω

∫
Ω̄

ωζ (x, 0) (φn(x, k))∗ dΩ̄

=
1

4πω2

dk

dω

∫
Ω̄

Φ(x, 0)(ω2φn(x, k))∗dΩ̄ − i

4πω2

dk

dω

∫
Ω̄

ωζ (x, 0) (φn(x, k))∗ dΩ̄

=
1

4πω

dk

dω

∫
Ω̄

[ωΦ (x, 0) − iζ (x, 0)] (φn(x, k))∗ dΩ̄. (4.21)

We can derive a similar formula for ω < 0 and we obtain the result that
fn(ω) = (fn(−ω))∗ for ω < 0. This allow us to write the expansion (4.19) as(

Φ (x, t)

−iζ (x, t)

)
= Re

{∫ ∞

0

2k

{ ∞∑
n=−∞

fn (ω)�φn(x, k (ω))

}
e−iωtdω

}
. (4.22)

If we take the case when ζ (x, 0) = 0 and change variables so the integration is over
k the formula simplifies and we obtain

Φ(x, t) = Re

{∫ ∞

0

k

{ ∞∑
n=−∞

(
1

2π

∫
Ω̄

Φ (x, 0) (φn(x, k))∗ dΩ̄

)
φn(x, k)

}
e−iωtdk

}
.

(4.23)

If Φ (x, 0) = 0, we have

ζ (x, t) = Re

{∫ ∞

0

k

{ ∞∑
n=−∞

(
1

2π

∫
Ω̄

ζ (x, 0) (φn(x, k))∗ dΩ̄

)
φn(x, k)

}
e−iωtdk

}
.

(4.24)

It is clear from (4.23) and (4.24) that the evolution of an initial potential without any
displacement is equivalent to the evolution of the same initial displacement without
any initial potential.

The theory above can be simplified by making the assumption that the water
depth is shallow. With the non-dimensionalization we have adopted this means that
ω =

√
Hk. The equations in this case are given in the Appendix.

4.3. Approximation of the time-domain solution.

4.3.1. Plane incident wave

We consider now only the part of (4.2) which comes from the scattered wave, and
we ignore the plane wave (which is unaffected by the cylinders), and we assume that
there are P poles close to the real axis at kp , p =1, . . . , P . Then we have

Φ(x, t) = Re

[
1

π

∫ ∞

0

f̂ (k)
(
eik(x cos χ+y sin χ) + φs (x, k)

)
e−iωtdk

]

≈ Re

[
1

π

∫ ∞

0

f̂ (k)

P∑
p=1

(
u∗

k∗
p

f (kp)

u∗
k∗
p
M(1)ukp

(k − kp)

)
Ukp

(x)e−iωtdk

]
, (4.25)
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where Ukp
(x) is given by (3.11) and we are also assuming that u∗

k∗
p

have been chosen

correctly according to (3.9) in the case when there is a repeated root. It is clear
from the fact that we have ignored the incident wave solution that we are already
considering only large t. We now assume that t is sufficiently large that we can further
approximate this integral by closing the contour in the lower half-plane. There is then
a contribution from the integral down the negative imaginary axis. We are neglecting
the contributions from all other terms in φs and we also neglect the contribution
from this integral as well. There is no obvious reason why the contribution from this
integral needs to be small, nor that the contributions from the other poles can be
ignored, except that for the case we consider here the scattering frequencies we do
consider are very close to the real axis. Furthermore, the numerical results show that
the contribution from the neglected term, for the examples considered here, is small.
This leads to

Φ(x, t) ≈ Re

[
P∑

p=1

−2if̂ (kp)

(
u∗

k∗
p

f (kp)

u∗
k∗
p
M(1)ukp

)
Ukp

(x)e−iωpt

]
. (4.26)

Note that we can extend the definition of f̂ to complex values using (4.1).

4.3.2. Results for a plane incident wave group

For our time-dependent results we will always assume the water is shallow, using
the expressions given in the Appendix. This allows some simplifications in the
computations, but it is done primarily to facilitate interpretation of the presented
results, since there is no dispersion of the wave groups investigated. We also assume,
following the Appendix, that H = 1. Figures 6 and 7 (and movies 6 and 7) show the
free surface vertical displacement at the points shown in figure 1 for an incident plane
wave group specified by

f̂ (k) = 2
√

πe−4(k−k0)
2

, k � 0, and f̂ (k) = f̂ (−k)∗ , k < 0, (4.27)

for k0 = 2.7635. This value of k0 for the four cylinder case corresponds to the real
part of the scattering frequency which is very close to the real axis (see Figure 2a).
As seen in figure 2(b), there are three scattering frequencies for nine cylinders whose
real parts are close to the value k0 = 2.7635, so we use this value in our investigations
of both four cylinders and nine cylinders. A plot of this incident wave group is
shown in figure 5(a). The group is compact and has a maximum value of unity. We
consider the wave to be incident in the χ = π/4 direction and we consider the free
surface elevation at the points shown in figure 1. Figures 6 and 7 show results for four
cylinders and nine cylinders, respectively, obtained from the generalized eigenfunction
expansion and from the approximation by (4.26). In the case of four cylinders, one
pole is included in the approximation; for the nine cylinders, the four poles close to
k0 = 2.7635 are used. We also show these solutions in movies 6 and 7. It is clear that
once the wave group has passed, there is good agreement between the approximate
theory and the true solution. There is a slow decay of the near-trapped mode, which
is not apparent on these short time scales. For the nine cylinder case there is a beating
of the response due to the existence of four modes of nearly the same frequency (see
figure 7b for example). We will investigate this beating further when we consider the
time-dependent solution for arbitrary initial conditions.
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Figure 5. The incident undisturbed plane wave function given by (4.27) (a) and (4.28) (b).
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Figure 6. The true (thicker line) and approximate (thinner line) solution at points a–e near
the four cylinders in figure 1, for a plane incident wave given by (4.27).
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Figure 7. The true (thicker line) and approximate (thinner line) solution at points a–d near
the nine cylinders in figure 1, for a plane incident wave given by (4.27).

We also consider a group given by

f̂ (k) =
sin (40(k − k0))

k − k0

e−20(k−k0)
2

, k � 0, and f̂ (k) = f̂ (−k)∗ , k < 0, (4.28)

which corresponds to a much longer wave packet which is concentrated at the
frequency k0. The incident wave group is shown in figure 5(b), and the resulting free
surface elevation at the points near the four cylinders in figure 8 (note the different
ordinates in the subplots of elevation) and movie 8. This shows the buildup of energy
as well as the subsequent decay. We have only plotted the approximate solution for
t > 0. The difference between the displacement during the rise time and the saturation
displacement follows an exponential decay. This pattern in the rise could be explained
using a similar argument to the one developed here.

4.3.3. Solution for arbitrary initial conditions

We now consider the case when the initial conditions are arbitrary. To keep the
presentation simple, we set the initial potential to zero so that displacement is given
by (4.24). In the plane wave case there was only a single-incident wave direction so
that we did not have to consider a sum over n. However, in all other regards the
approximation proceeds exactly as before. We take

φn(x, k) =

P∑
p=1

(
u∗

k∗
p

f n (k)

u∗
k∗
p
M(1)ukp

(k − kp)

)
Ukp

(x), (4.29)
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Figure 8. The true (thicker line) and approximate (thinner line) solution at points a–e near
the four cylinders in figure 1, for a plane incident wave given by (4.28).

which leads to

ζ (x, t) ≈ Re

[∫ ∞

0

k

{
N∑

n=−N

(
1

2π

∫
Ω̄

ζ (x, 0)

( P∑
p=1

(
u∗

k∗
p

f n(k)

u∗
k∗
p
M(1)ukp

(k − kp)

)
Ukp

(x)

)∗

dΩ̄

)

×
(

P∑
q=1

(
u∗

k∗
q

f n(k)

u∗
k∗
q
M(1)ukq

(k − kq)

)
Ukq

(x)

)}
e−iωtdk

]

≈ Re

[
P∑

p=1

−ikp

(kp − k∗
p)

N∑
n=−N

∣∣∣∣ u∗
k∗
p

f n(kp)

u∗
k∗
p
M(1)ukp

∣∣∣∣
2(∫

Ω̄

ζ (x, 0)
(
Ukp

(x)
)∗

dΩ̄

)
Ukp

(x)e−iωpt

]
.

(4.30)

Note that we can calculate f n for complex values as we did for f . Here we have
derived the last expression by closing the contour in the lower half-plane and again
ignoring the contribution from the imaginary axis. We have also assumed that the
poles are sufficiently far apart that we can treat them separately, or that when poles
are close together, they have come from the splitting of orthogonal poles and that
they have retained this orthogonality enough to be approximated as orthogonal.

4.3.4. Results for an arbitrary initial condition

We present results for an initial distribution of the form

ξ = e−2((x−0.5)2+(y−0.5)2) + e−2((x+0.5)2+(y+0.5)2). (4.31)

This initial condition is shown in figure 9. The elevation at points near the cylinders
is shown in figures 10–11 and we also show the solution in movies 9 and 10. The
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Figure 9. The initial condition given by (4.31) for four (a) and nine (b) cylinders.
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Figure 10. The true (thicker line) and approximate (thinner line) solution for the points a–e
as shown in figure 1 for an incident displacement given by (4.31) for four cylinders.

true solution tends to the approximate solution after an initial period of time. The
long-time solution shown for nine cylinders, plotted in figure 12, shows the beating
effect of the four near-trapped modes (shown in figure 4) having close frequencies as
shown in figure 2(b).

5. Summary
We have considered the problem of near trapping by arrays of vertical bottom-

mounted cylinders. This problem has been well studied and it is relatively simple to
determine the single-frequency solutions. We have shown that the solution in the time
domain can be calculated from the single-frequency solutions. For the case of a plane
incident wave from infinity this is straightforward, but for the case of an arbitrary
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Figure 11. The true (thicker line) and approximate (thinner line) solution for the points a–d
as shown in figure 1 for an incident displacement given by (4.31) for nine cylinders.
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Figure 12. As in figure 11 except the time is from 0 to 200.
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initial condition we require the use of a generalized eigenfunction expansion. It has
previously been established that the near trapping is associated with a singularity in
the analytic extension of the solution to the lower complex plane. We have shown
here that there is also a mode associated with the singularity which is similar to an
eigenfunction. We have shown that, by deforming the contour of integration given
the generalized eigenfunction expansion, we can determine an approximate solution
in terms of the near-trapped modes. We have given some numerical examples for
arrangements of four and nine cylinders which show the validity of our approach.

The method outlined here could be extended to other situations. For example,
the theoretical basis for the extension of the generalized eigenfunction expansion to
floating bodies can be found in Hazard & Lenoir (2002). If a particular geometry
has near-trapped modes, the method outlined to find the approximation should work
exactly as described here.

This research was supported by Marsden grant UOO308 from the New Zealand
government. We would also like to thank Dr Garry Tee for his editorial assistance.

Appendix. Shallow water
We present here the equations when the water depth is shallow. Because we have

removed the depth dependence in the finite depth equations, the finite depth and
shallow depth equations are almost identical. The only difference between (4.23) and
(4.24) and the equations we will derive here is that for shallow water the dispersion
equation (2.14) is k = |ω|/

√
H (i.e. there is no dispersion in shallow water). We further

assume that H = 1 to simplify the equations we will derive. The equations satisfied by
Φ (x, t) for shallow water are the following:

�Φ = ∂tζ, x ∈ Ω̄, (A 1)

∂tΦ = −ζ, x ∈ ∂Ω̄. (A 2)

We write the equations in the time domain as

i∂t

(
Φ

−iζ

)
=

(
0 1
� 0

)(
Φ

−iζ

)
. (A 3)

The evolution operator

A =

(
0 1
� 0

)
(A 4)

is symmetric in the inner product space with inner product given by〈(
Φ

−iζ

)
,

(
Υ

−iη

)〉
H

=

∫
Ω̄

∇Φ (∇Υ )∗ dΩ̄ +

∫
Ω̄

−iζ (−iη)∗ dΩ̄. (A 5)

As before we assume that the inner product space is a Hilbert space and the operator
is self-adjoint. The generalized eigenfunctions of the operator are given by

�φn(x, ω) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(
φn(x, k (ω))

ωφn(x, k (ω))

)
, ω > 0

(
(φn(x, k (ω)))∗

ω (φn(x, k (ω)))∗

)
, ω < 0

, (A 6)
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where φn(x, k) are exactly as found previously. These satisfy the following
orthogonality relations, assuming ω1 � 0 and ω2 � 0

〈�φn(x, ω1),�φm(x, ω2)〉H =

∫
Ω̄

∇φn(x, k1)(∇φm(x, k2))
∗ dΩ̄ +

∫
Ω̄

k1φn(x, k1)(k2φm(x, k2))
∗dΩ̄

=

∫ 2π

0

∫ ∞

0

k1k2rJn (k1r) einθJn (k2r) e−imθ dr dθ

+

∫ 2π

0

∫ ∞

0

k1k2rJn (k1r) einθJn (k2r) e−imθ drdθ

= 4πδmnk1δ (k1 − k2)

= 4πδmnω1δ (ω1 − ω2) . (A 7)

The normalizing condition for negative ω is the same. The solution in the time domain
is expanded in the waves �φn(x, ω) :(

Φ (x, t)

−iζ (x, t)

)
=

∫ ∞

∞
k

{ ∞∑
n=−∞

fn (k)�φn(x, ω)

}
e−iωt dω. (A 8)

If we take the inner product we obtain〈(
Φ (x, 0)

−iζ (x, 0)

)
,�φ(x, ω)

〉
H

= 4πω2fn (ω) . (A 9)

This gives us the following expression for fn (ω) for ω � 0,

fn (ω) =
1

4πk2

∫
Ω̄

∇Φ (x, 0) (∇φn(x, k))∗ dΩ̄ +
1

4πk2

∫
Ω̄

−iζ (x, 0) (kφn(x, k))∗ dΩ̄

=
1

4πk2

∫
Ω̄

Φ (x, 0) (−�φn(x, k))∗ dΩ̄ +
1

4πk

∫
Ω̄

−iζ (x, 0) (φn(x, k))∗ dΩ̄

=
1

4π

∫
Ω̄

Φ (x, 0) (φn(x, k))∗ dΩ̄ +
1

4πk

∫
Ω̄

−iζ (x, 0) (φn(x, k))∗ dΩ̄. (A 10)

It can easily be shown that fn(ω) = (fn(−ω))∗ for ω < 0. If we take the case when
Φ (x, 0) = 0, then the formula simplifies and we obtain

ζ (x, t) = Re

{∫ ∞

0

k

{ ∞∑
n=−∞

(
1

2π

∫
Ω̄

−iζ (x, 0) (φn(x, k))∗ dΩ̄

)
φn(x, k)

}
e−iktdk

}
,

(A 11)

where we have replaced ω by k. This is identical to (4.24) except there is no dispersion
in this equation.
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